
2025/03/21 12:13 1/4 WebAPI over UDP

AVOSUPPORT - https://avosupport.de/wiki/

Titan WebAPI

WebAPI over UDP

By design, the Web API works with HTTP requests - and HTTP is bound to TCP (this is about network

protocols - if you don't know what these acronyms mean then this topic isn't interesting for you 
). You may come across situations where you need to control Titan from UDP requests, e.g. when
working with particular main control suites.

While it is not possible to simply fire the same request as UDP string onto Titan, it is very well possible
to run a little program like socat, which - when started with proper parameters - forwards UDP strings
as TCP requests. The only other thing is that you need to send a complete HTTP request string.

1. Get Socat

E.g. download it from
https://sourceforge.net/projects/unix-utils/files/socat/1.7.3.2/socat-1.7.3.2-1-x86_64.zip/download

2. Start Socat

Run Socat on the same computer like Titan, with proper parameters. In my example it worked when
called like this in a console window:

socat udp4-listen:9090,reuseaddr TCP:192.168.178.59:4430

The parameters I used are

udp4-listen:9090 – this tells socat to listen to UDP messages, on port 9090, in IPv4 protocol
reuseaddr – allows other sockets to bind to the same address (I found this helps avoiding
some issues)
TCP:192.168.178.59:4430 – this tells where and how socat forwards the messages to, in
out case, as TCP requests, to the IP of the Titan PC (the same computer socat is running on), on
port 4430 (the port Titan listens on)

When everything is setup properly then socat just sits there and does its job, without any visual
feedback. However when debugging or looking for a particular issue it might help to start socat with
some debug output, using the option -v

socat -v udp4-listen:9090,reuseaddr TCP:192.168.178.59:4430

This outputs the transferred data to you screen, and may help in finding possible faults.

You can also start socat with the hostname instead of the IP address, like this:

socat udp4-listen:9090,reuseaddr TCP:localhost:4430

https://sourceforge.net/projects/unix-utils/files/socat/1.7.3.2/socat-1.7.3.2-1-x86_64.zip/download


Last update: 2025/03/20 16:08 webapi:implementations:udp https://avosupport.de/wiki/webapi/implementations/udp

https://avosupport.de/wiki/ Printed on 2025/03/21 12:13

In order to terminate socat simply use

Ctrl-C

3. Send full HTTP request strings over UDP

Now, as socat expects UDP messages and forwards them as TCP, and Titan expects full HTTP
requests, we need to send full request strings. Otherwise there will be no result at all, or socat
crashes. In my tests the a.m. option -v did help as it shows the reply from the Titan engine (here:
Status 400 - Bad Request…).

In order to send some UDP messages, either use your control suite, or - for tests - use a tool like
PacketSender (https://packetsender.com/).

The parameters to send as UDP are

address: the IP address of the Titan computer (in my case 192.168.178.59)
port: 9090 (the port which we told socat to listen to)
method: UDP
ASCII string: this needs to be the full HTTP request string, starting with GET, containing the API
request itself, the protocol, host/port, and must end with two linefeeds:

GET
/titan/script/Playbacks/FirePlaybackAtLevel?userNumber=1&level=1&bool=false
HTTP/1.1\r\nHost: 192.168.178.59:4430\r\n\r\n

Only for readability here is the same string wrapped into lines (but you need to send it as one
string):

GET
/titan/script/Playbacks/FirePlaybackAtLevel?userNumber=1&level=1&bool=false
HTTP/1.1\r\n
Host: 192.168.178.59:4430\r\n

https://avosupport.de/wiki/_detail/webapi/implementations/socat.png?id=webapi%3Aimplementations%3Audp
https://packetsender.com/
https://avosupport.de/wiki/_detail/webapi/implementations/packetsender.png?id=webapi%3Aimplementations%3Audp


2025/03/21 12:13 3/4 WebAPI over UDP

AVOSUPPORT - https://avosupport.de/wiki/

\r\n

The first line starts with the HTML method (GET), and contains the API request1.
(/titan/script/Playbacks/FirePlaybackAtLevel?userNumber=1&level=1&bool=false) and the
protocol (HTTP/1.1)
The second line defines the Host (IP address and port) - this is required to make it a valid2.
HTTP1.1 request
The third line simply contains a linefeed (strictly the second linefeed after the one at the end of3.
line 2), in order to mark the end of the request.

Note that different UDP programs seem to handle line endings differently.

Microsoft's UDP-Sender/Receiver seems to be unable to send linefeeds in the transmitted
message; if you write them escaped (\r\n) then it dends the literal characters, and a normal
linefeed (pressing the ENTER button) isn't reflected in the message at all
the UDP Test Tool also sends escaped linefeeds as literal characters, causing Titan to reject this
as '400 Bad Request'. However you can press ENTER instead of writing \r\n – and this gets
correctly transmitted as linefeed.
Here is a screenshot of the same string entered with pressing ENTER instead of writing the
linefeeds:

Here UDP Test Tool is shown with linefeeds in the ASCII text (hardly visible), and their representation
(note the highlighted 0D 0A sequences in the HEX view):

https://www.microsoft.com/de-at/p/udp-sender-reciever/9nblggh52bt0
https://udp-test-tool.informer.com/
https://avosupport.de/wiki/_detail/webapi/implementations/udp_linefeeds.png?id=webapi%3Aimplementations%3Audp
https://avosupport.de/wiki/_detail/webapi/implementations/udp_tool_ascii.png?id=webapi%3Aimplementations%3Audp


Last update: 2025/03/20 16:08 webapi:implementations:udp https://avosupport.de/wiki/webapi/implementations/udp

https://avosupport.de/wiki/ Printed on 2025/03/21 12:13

Maybe this does not work for all Web API requests - but it is a starting point to make it available over
UDP.

From:
https://avosupport.de/wiki/ - AVOSUPPORT

Permanent link:
https://avosupport.de/wiki/webapi/implementations/udp

Last update: 2025/03/20 16:08

https://avosupport.de/wiki/_detail/webapi/implementations/udp_tool_hex.png?id=webapi%3Aimplementations%3Audp
https://avosupport.de/wiki/
https://avosupport.de/wiki/webapi/implementations/udp

	WebAPI over UDP
	1. Get Socat
	2. Start Socat
	3. Send full HTTP request strings over UDP


