2025/11/22 03:56 1/6 Recorded vs. coded macros

Recorded vs. coded macros

For quite many years/versions Avolites Titan allows for recording macros one the fly. This involves the
<Macro> button, and records all the button presses you do, in exactly this order. This sequence can
then be played back by just recalling the recorded macro. More information on this is available in the
manual at page 67. There is the additional benefit of calling the macro with a number: the macro will
then be executed the number of times you called it with, something like <5> [Macro X] will
execute Macro X 5 times.

While this is of great help when quickly creating some shortcuts which you frequently need when
programming, there are some caveats. You cannot edit a recorded macro, you do not even see what's
recorded in the macro, and: the macro stores only button presses, regardless which menu, function or
state this button is currently linked to.

In turn, coded macros do not call button presses, but call functions or operate on menus and values.
Thus, the outcome is much more predictable. However, it requires some coding skills, and you always
need to know the required functions.

Limitations

While macros already make a powerful tool, there is still lots of headroom. To spare you some time,
here are some hints on things with are currently (Titan v10.1) not possible with macros:

e variables

e more user input

conditions

loops (while, for, each, until)

breakpoints (run until a certain point, wait for a trigger, then proceed)
console output (would be helpful for debugging)

and most importantly

e update macros while Titan is running
e edit macros within Titan

However, not only this wiki, but also Titan is under constant development: let's see what the future
might bring.

The Fix+1 example

In order to illustrate power, caveats, possibilities and weaknesses of the various kinds of macros, her
comes an example: we want to create an on/off chaser on a bigger number of fixtures/lamps: imagine
you had 24 par cans, patched as fixtures 1~24, and wanted one can lit, then the next, then the
third... A - German - video to illustrate this is available at

AVOSUPPORT - https://avosupport.de/wiki/

http://www.avolites.com/Portals/0/downloads/manuals/titansuite/TitanManualV10.1.pdf#page=67
http://www.avolites.com/Portals/0/downloads/manuals/titansuite/TitanManualV10.1.pdf#page=67

Last update:

2017/10/29 16:24 macros:recorded_vs._coded_macros https://avosupport.de/wiki/macros/recorded_vs._coded_macros?rev=1509294263

https://www.youtube.com/watch?v=smxprAfTNkI

manually recording

When programming this manually you would do like this:

=

<Record> <Record> {Select playback} // starts recording a chaser on a particular
playback

<1> <@> <@> // selects fixture 1 and puts it at 100%

{Select playback} // records this step

<Clear> // clears programmer

<2> <@> <@> // selects fixture 2 and puts it at 100%

{Select playback} // records this step

<Clear> // clears programmer

.... [/ repeat with fixture 3..24

9. <Exit>// finish recording chaser

NouUusAwnN

©

You will soon learn that this is prone to errors, pressing wrong buttons etc.

advanced manually recording

There are some little helper functions available: <Fix+1> advances through the selected fixtures,
[Append Step] appends a step regardless where the chaser is currently recorded, and instead of
<Clear> - which also deletes the fixture selection - you can set the fixture to 0 with <@> <0>
<Enter>. You would do like this:

1. {Select group of fixtures}

2. <Record> <Record> {Select playback} // starts recording a chaser on a particular
playback

<Fix+1> // selects next fixture

<@> <@> // puts fixture at 100%

[Append Step] // appends this as new chase step

<@> <0> <Enter>// puts fixture at 0%

{repeat steps 3~6} // until fixture 24 is reached

<Clear> // clears programmer

<Exit> // finish recording chaser

L

recording a macro

When there is something repeated then it makes sense to put this into a macro - in this case: steps
3~6. However, since the current state of the console might change, it is essential that the macro is
recorded in the correct context. In this case: when recording a chase. You would do like this:

1. {Select group of fixtures}

2. <Record> <Record> {Select playback} // starts recording a chaser on a particular
playback

3. <Macro> [Record] {Select button to store macro on} // starts recording the macro,

https://avosupport.de/wiki/ Printed on 2025/11/22 03:56

https://www.youtube.com/watch?v=smxprAfTNkI

2025/11/22 03:56 3/6 Recorded vs. coded macros

macro LED is flashing
<Fix+1> // selects next fixture
<@> <@> // puts fixture at 100%
[Append Step] // appends this as new chase step
<@> <0> <Enter>// puts fixture at 0%
<Macro> // finish recording this macro - macro LED stops flashing
9. {macro button where macro is stored} // until fixture 24 is reached, and/or
10. <20> {macro button where macro is stored} // repeats macro 20 times
11. <Clear>// clears programmer
12. <Exit>// finish recording chaser

®©~No U A

You will soon like this - in particular as you can re-use the macro. Next time you simply do

1. {Select group of fixtures}

2. <Record> <Record> {Select playback} // starts recording a chaser on a particular
playback

3. <24> {Recall previously stored macro} // repeats macro 24 times

4. <Clear>// clears programmer

5. <Exit>//finish recording chaser

This way, programming a chase even of some dozen fixtures is merely a question of seconds.

Investigating the recorded macro

At some point you'll stumble across the Export Macro and you are curious enough to export the above
chaser macro (give this the usernumber 1, retrieve and execute the export macro, and open the
exported macro). The result will look like this:

<?xml version="1.0" encoding="utf-8"7>
<avolites.macros>
<!-- Automatically exported from Unsaved Show - Titan Mobile 10.0.32.2
(SB-LENOVO) on 20/03/2016 11:24:49. -->
<macro id="UserMacro.Macrol">
<name>Macrol</name>
<sequence>

<step pause="0.001">Menu.Stack.PushOrReloadMenu("Primary",
"Expert.Chases.AppendStep")</step>

<step
pause="0.001">Menu.InjectInput("OnButtonUp", "FaderlessPlaybackSelect.0", "Sta
ticPlaybacks",0)</step>

<step
pause="0.001">Menu.InjectInput("OnButtonDown", "NextFixture.0", "NoGroup",0)</
step>

<step
pause="0.001">Menu.InjectInput("OnButtonUp", "NextFixture.0", "NoGroup",0)</st
ep>

<step
pause="0.001">Menu.InjectInput("OnButtonDown", "KeypadAt.0", "NoGroup",0)</ste
p>

<step

AVOSUPPORT - https://avosupport.de/wiki/

https://avosupport.de/wiki/example/exportmacro

Last update:
2017/10/29 16:24

macros:recorded_vs._coded_macros https://avosupport.de/wiki/macros/recorded_vs._coded_macros?rev=1509294263

pause="0.001">Menu
<step
pause="0.001">Menu
p>
<step

pause="0.001">Menu.

<step

pause="0.001">Menu.

>
<step

pause="0.001">Menu.

<step

pause="0.001">Menu.

p>
<step

pause="0.001">Menu.

<step

pause="0.001">Menu.

step>
<step

pause="0.001">Menu.

ep>
<step

pause="0.001">Menu.

step>
<step

pause="0.001">Menu.

ep>
</sequence>
</macro>
</avolites.macros>

.InjectInput("OnButtonUp", "KeypadAt.0", "NoGroup",0)</step>

.InjectInput("OnButtonDown", "KeypadAt.0", "NoGroup",0)</ste

InjectInput("OnButtonUp", "KeypadAt.0", "NoGroup",0)</step>

InjectInput("OnButtonDown", "Softkey.2", "NoGroup",2)</step

InjectInput("OnButtonUp", "Softkey.2", "NoGroup",62)</step>

InjectInput("OnButtonDown", "KeypadAt.0", "NoGroup",0)</ste

InjectInput("OnButtonUp", "KeypadAt.0", "NoGroup",0)</step>

InjectInput("OnButtonDown", "NumericKeys.0", "NoGroup",0)</

InjectInput("OnButtonUp", "NumericKeys.0", "NoGroup",0)</st

InjectInput("OnButtonDown", "KeypadEnter.0", "NoGroup",0)</

InjectInput("OnButtonUp", "KeypadEnter.0", "NoGroup",0)</st

Again we only explain the functional steps within the sequence. (For all the other XML details please
refer to Formats and syntax)

all <step ..>tags

also contain a 'pause’ property: pause=“0.001". This is only a minor thing,

and is discussed in using_pause

Menu.Stack.PushOrReloadMenu(“Primary”, “Expert.Chases.AppendStep”) proves

what was mentioned earlier: the macro refers to the state the software was in when the macro
was recorded. in our example the macro was recorded in the 'Record Chase/Append Step'
mmenu, thus Expert.Chases.AppendStep

the next line

Menu.InjectInput(“OnButtonUp”,

n u

FaderlessPlaybackSelect.0”,“StaticPlaybac

ks”,0) is somewhat ophane and has something to do with how macros are recorded: the
corresponding previous “OnButtonDown” actually triggered recording the macro - and now the
key needs to be released again - hence this line is in the macro. | guess it does just nothing -
very few actions are performed when a button is released.

after this we have a series of Menu.InjectInput (“OnButtonDown”.. and subsequent

Menu.InjectInput(“OnButtonDown”... - again as mentioned earlier, the macro simply
records key presses, and Menu.Injectinput is, by the way, the function to simply feign some
input for Titan. The only interesting thing are the buttons which were pressed:

https://avosupport.de/wiki/

Printed on 2025/11/22 03:56

https://avosupport.de/wiki/macros/formats_and_syntax#xml_format
https://avosupport.de/wiki/using_pause
https://avosupport.de/wiki/function/menu.injectinput

2025/11/22 03:56 5/6 Recorded vs. coded macros

o “NextFixture.0”,“NoGroup”,0is <Fix+1>

o “KeypadAt.0"”,“NoGroup”,0 is <@>

o “Softkey.2"”,“NoGroup”, 2 is menubutton which is in this state [Append
Step]

o “NumericKeys.0"”,“NoGroup”, 0 is the <0> key, and

o “KeypadEnter.0"”,“NoGroup”, 0 is the <Enter> key.

All we learn from this, for the moment, is that recorded macros really store button presses - nothing
more, nothing less.

One little warning: DMX triggers are also regarded input which might make it into a recorded macro.
Never record macros with DMX input enabled! Else your macro will soon become really
big, and the resulting behaviour can be unpredictable. (I admit this info is back from version 7
or 8 and might have changed, though.)

Coding this macro?

Finally we try to code this macro (albeit | have to say that | really like recording this macro as an
o0

example =). We go back to our advanced manually recording and try to find the suitable

functions for these steps:

next fixture

at full (@@)
append step
ato0

Ll

1. “Next fixture” might work as Selection.Context.Global.PatternNext()

2. “at full” is not that easy - we were discussing how to set attribute value the other day

3. “append step” is the most tricky part: the function could be Playbacks.AppendCue(Handle
handle) - but this would require us to know the handle

4. “at 0" - see above 2.

Conclusions

What have we learned from this?

e recorded macros are specific to the state the software is in
e sometimes a recorded macro might not only do the trick, but maybe the task is simply not to

accomplish with code
e it's always a good idea to know how to program systematically: the first approach wouldn't fit

for a macro at all

AVOSUPPORT - https://avosupport.de/wiki/

Last update:

2017/10/29 16:24 macros:recorded_vs._coded_macros https://avosupport.de/wiki/macros/recorded_vs._coded_macros?rev=1509294263

From:
https://avosupport.de/wiki/ - AVOSUPPORT

Permanent link:

94263

Last update: 2017/10/29 16:24

https://avosupport.de/wiki/ Printed on 2025/11/22 03:56

https://avosupport.de/wiki/
https://avosupport.de/wiki/macros/recorded_vs._coded_macros?rev=1509294263
https://avosupport.de/wiki/macros/recorded_vs._coded_macros?rev=1509294263

	Recorded vs. coded macros
	Limitations
	The Fix+1 example
	manually recording
	advanced manually recording
	recording a macro
	Investigating the recorded macro
	Coding this macro?
	Conclusions

