2025/11/27 11:52 1/8 Moving Screens

Ai Example

Moving Screens

The background of a stage is formed of screen segments, each hung from Artnet controlled winches.
Ai calculates position and rotation of each segment, and maps the contents accordingly.

by: Sebastian Beutel, January 2016
published: here
tested in version: Ai v8
. Stagepatch
download: “Models

Hint: click the images to show them larger.

moving, winch, quaternion, uv-map

Background

This project was done for a friend of mine who is the lighting designer for one of Germany's most well-
known comedians. He designed the stage elements and wanted to use Ai to map on the moving
segments. This project was used on tour for more than a year.

The background of the setup is formed from a number of segments, each a flat surface of approx. 1 x
2 meters. Five such segments are hung from the rig, each with 3 Artnet-controlled winches. Per
segment there is one winch for the top/left corner, one for the top/right corner, and one for the
bottom-center point, this winch being suspended more upstage. With the winches in such a setup it is
possible to hoist the segment, and to rotate and/or tilt it (within limits). The winches used in this setup
feed their current position back via Artnet - and these data are used by Ai to calculate the current
position and rotation of each segment. Likewise, more such segments were standing on the ground,
on Artnet-controlled rotators, which also fed their current position back. This way it was possible to
map contents onto the whole surface.

AVOSUPPORT - https://avosupport.de/wiki/

https://avosupport.de/wiki/_media/ai/examples/movingscreens/stagepatch.zip
https://avosupport.de/wiki/tag/moving?do=showtag&tag=moving
https://avosupport.de/wiki/tag/winch?do=showtag&tag=winch
https://avosupport.de/wiki/tag/quaternion?do=showtag&tag=quaternion
https://avosupport.de/wiki/tag/uv-map?do=showtag&tag=uv-map
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_total.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_stagepatch_total.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens

Last
update:
2018/12/05
10:05

ai:examples:movingscreens:movingscreens https://avosupport.de/wiki/ai/examples/movingscreens/movingscreens?rev=1544004354

Here, Ai was not only used as visualiser, but was the main mapping machine. The show was
controlled from a GrandMA2 command wing, and most of the parts were timecoded to be in sync with
the music.

Some of the special aspects of this project:

e it was necessary to mimic the real behaviour of the segments, in order to reproduce it from the
position data

e something what was completely new to me: we ran into a gimbal lock, and Mr. Dave Green was
kind enough to explain this and provide a solution - see EulerToQuaternion

e the handles of the projectors and of most of the screen fixtures were hidden from the stage
construction page, in order to gain overview

e it is not possible to do a proper softedge on surfaces which can dynamically tilt. Hence it was
decided to go for a hardedge, and only some segments were displayed per projector

¢ as the entire background was always mapped as one big canvas, only one screen was exposed
to the Ai GUI. The part each segment was to show was set in the UV map - hence, each
segment needed to have its designated model.

Used Modules and Patches

Constant
Rectangle
Window

video out

Monitor

Euler To Quaternion
Formula

ArtNet Input Large
Patch 10

Notepad

¢ Vector Math

Stage Patch

Again, the whole stage patch can be devided in some sections:

https://avosupport.de/wiki/ Printed on 2025/11/27 11:52

https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_stagepatch_top.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/ai/modules/controller/constant
https://avosupport.de/wiki/ai/modules/generator/rectangle
https://avosupport.de/wiki/ai/modules/gl/window
https://avosupport.de/wiki/ai/modules/display/video_out
https://avosupport.de/wiki/ai/modules/controller/monitor
https://avosupport.de/wiki/ai/patches/eulertoquaternion
https://avosupport.de/wiki/ai/modules/math/formula
https://avosupport.de/wiki/ai/modules/network/artnetinputlarge
https://avosupport.de/wiki/ai/modules/patch/patch_io
https://avosupport.de/wiki/ai/modules/text/notepad
https://avosupport.de/wiki/ai/modules/math/vector_math

2025/11/27 11:52 3/8 Moving Screens

¢ in the middle there are the main inputs and outputs

e the upper part holds the upper (hung) segments - the screens, inputs, and calculations
» the lower part holds the segments which were standing on the ground

e at the bottom there are the projector definitions

Middle: the main inputs and outputs

e there are a few Constant modules to make it easy to set some parameters globally:
o Height in m sets the general height of where the winches are hung
o BackChan Univ. sets the ArtNet universe for the data for the background segments'
winches
o MediaSpinn Univ. sets the ArtNet universe for the rotators on the ground
e the little cluster of a Rectangle, a Window and a video out (Output 0) gets its signal from the
first screen fixture (which is the only one shown in the GUI) - this allows a quick preview, in a
window or on a screen
e the AI OUTPUTS patch and the Multi MonitorOut button are simply moved here when
moving modules and patches around - they belong to any proper stage patch/project
e Mixer 0 is the only mixer in this patch - it stems from the beginning of this project when only
one screen was in the patch. Note that as there was only one mixer needed (all screen
elements get the same contents and apply their UV map), all other mixers were simply
removed, and all screen fixtures get their video input from this one mixer
e Patch IO is notthe module butthe main IO which is there in every project, to allow
connectivity to your network. Here, the DMX Send port needs to be connected to various other
patches in order for them to receive the ArtNet data
e the MediaSpinner ArtNet subpatch belongs (technically) to the ground rotators and is
explained further down

Upper part: the hung segments

AVOSUPPORT - https://avosupport.de/wiki/

https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_mainio.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/ai/modules/controller/constant
https://avosupport.de/wiki/ai/modules/generator/rectangle
https://avosupport.de/wiki/ai/modules/gl/window
https://avosupport.de/wiki/ai/modules/display/video_out

Last

gg(ljg;%/% ai:examples:movingscreens:movingscreens https://avosupport.de/wiki/ai/examples/movingscreens/movingscreens?rev=1544004354

10:05

Caledlske 1
¥_Pos
¥_Po=
-
Susp_Width
Susp_Haight

Laft_abs
Right _Abs
Back_ibs

Arenet Inpot il
Aartnet Univarse

Height in m
GiE Lafl ID
1a Right ID
o @ Back D

AddictFiskure_8 x* Anghe Upl
Model 1 m Qut:

w Quakarnion

X Quat

an Haight 1 Quat
reen Depth z Ouat
w Quat

For each of the 5 hung segments there are some patches and modules in order to calculate positions
and rotation data, and to display the screen segment:

e top-left, there are some constants to define the general position: X Pos, Y Pos and Z Pos set
where the segment generally is (its origin), and Susp Width and Susp Height let us fine-
tune how the segments are rigged (the smaller the suspension distance, the more tilt can be
acchieved with a little winch travel)

e Winde 1-3is a subpatch. It takes the global Artnet Input, Artnet Universe and
Height. Also, the IDs of the winches are exposed as inputs and need to be set to match which
winch is located where. The patch then takes the Artnet data and calculates the height of each
of the three points (left, right, back). These results are then send to the next subpatch
Calculate. For an explanation of the calculations see below.

e Calculate is the subpatch where the magic happens: from the height data for each point the
absolute position and rotation of this segment is calculated. Inputs are the constants defined

https://avosupport.de/wiki/ Printed on 2025/11/27 11:52

https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_upper_screen.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/ai/modules/controller/constant

2025/11/27 11:52 5/8 Moving Screens

and the positions from the previous subpatch - outputs are position and rotation (angle) data.
For an explanation of the calculations see below.

e two Monitor modules were inserted here only to monitor the computed angels

e Euler To Quaternion is another subpatch which is explained below. It converts the computed
rotation data to another dimension (Quaternions).

e x_corr is a fader to allow for minor corrections of the x position - its value is also sent into the
Calculate subpatch

» finally, bottom-left is the screen fixture for this very segment:

o only the first one is left with its original name AddictFixture 0, and all others were
renamed to some other name. This is how Ai works: only fixtures with names in ascending
order are displayed with handles in the GUI. Renaming the other screen fixtures removes
their handles, but lets them still show up, in the GUI

o make sure to load the correct model into each screen fixture (drag and drop the 3ds file
onto the fixture)

o Canvas Res Xand Canvas Res Y need to be set to the values the contents is
produced in

o Screen Fixture OQutput is sent to the projectors at the bottom of the stage patch

o the green Canvas Out is connected only for the very first screen (the one with the
mixer) and is patched to our little monitor window (see above)

o Mix Return gets the main video mix from our only mixer (see above)

o x/y/z Pos Adj are connected to our Calculate subpatch where they get the positions
from

o x/y/z/w Quat get the special rotation data from the EulerToQuaternion subpatch

Winde 1-3: getting the absolute height data

As described above the subpatch Winde 1-3 takes the Artnet dat and returns the absolut heights for
the three points. Double-click the module to reveal its contents:

) 2x8-Bitto 16-B WL [P

This should be easy to understand - simply read it left-to-right:

AVOSUPPORT - https://avosupport.de/wiki/

https://avosupport.de/wiki/ai/modules/controller/monitor
https://avosupport.de/wiki/ai/patches/eulertoquaternion
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_winde.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_winde_2x8to16bit.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens

Last
update:
2018/12/05
10:05

ai:examples:movingscreens:movingscreens https://avosupport.de/wiki/ai/examples/movingscreens/movingscreens?rev=1544004354

* the (exposed to the parent patch) constants take the Id per winch, and based on this, the
following Formula modules compute the two channel numbers per winch

e the ArtNet Input Large module (with the Server Input and Universe ports patched to the

Patch I0) return the Artnet values for the 6 channels in question (here it was decided to get the

values normalized, i.e. 0..1)

the 2x8-Bit to 16-Bit subpatch uses a little Vector Math to combine the high and the low

channel into one value

of course, for debugging, some Monitor modules display the results

the Formula modules convert the results to meters (as the winches have a resolution of

1/millimeter), and subtract this from the global height (again from the patch io)

the result is then returned via the patch io

 the Notepad simply gives some explanations: 'The winch returns its position in mm. One Artnet
digit equals one mm travel. E.g. 1 (hi byte) + 255 (lo byte) gives a travel of 511 mm.'

Calculate

Calculate is the main subpatch where from the three points' height the position and rotation is
computed.

Note that this is not exact - honestly | had wished to have someone with a degree in
physics to help me with this. However it was close enough to reality to be used on a tour
for more than a year.

Let's try to explain the logic:

e highest front: the highest front height (from Left Abs and Right Abs)

e max_rotation: the max. height difference based on suspension width/height

left real, right real: either Left_Abs (Right_Abs) if this is higher, or (if this is the lower

point) the other point's height minus max_rotation

highest total: the greatest height - either from highest_front, or Back_Abs

max_tilt: right now this directly passes Susp Height but is already a formula module for

further tweaking

e back real: the greatest height from either Back _Abs (if the back point is the highest) or the
highest point from L, R, B, minus the suspension height

e min_front: (this is in case B would be the highest point - it was agreed that this would never

https://avosupport.de/wiki/ Printed on 2025/11/27 11:52

https://avosupport.de/wiki/ai/modules/controller/constant
https://avosupport.de/wiki/ai/modules/math/formula
https://avosupport.de/wiki/ai/modules/network/artnetinputlarge
https://avosupport.de/wiki/ai/modules/patch/patch_io
https://avosupport.de/wiki/ai/modules/math/vector_math
https://avosupport.de/wiki/ai/modules/controller/monitor
https://avosupport.de/wiki/ai/modules/math/formula
https://avosupport.de/wiki/ai/modules/text/notepad
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_calculate.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_calculate_maxrot.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens

2025/11/27 11:52 7/8 Moving Screens

happen by controlling the travel properly, to prevent the pane from flipping): back_real minus
Susp_Height plus 0.001

e rotation: the 'roll', computed from left_real, right_real and Susp_Width - note that this result
is in radiants

e rotation grad: converts the rotation (roll) value to degrees (by multiplying with 180/PI)

e y position_ front: either the mid between left_real and right_real, or min_front (if L and R
are slack)

e tilt: the tilt angle is computed (in radiants) from diff between back real, y_position_front, and
Susp_Height

e tilt grad: by multiplying with 180/PI tilt is converted to degrees. +90 accomodates for
rotated models. The result is x Angle Adjust

e X_z_ correct: the amount of correction for the x value, based on the tilt angle

e X_correct is the amount of correction to the x value (how far the model is shifted
horizontally). This is computed from rotation (roll), Susp_Height, x_z correct and x_correct
which allows to be set from the parent patch

e x_total: X Pos and x _correct give the total x value (x Pos Adj) - this is the left-right-position
based on the computed rotation angles

e y position: the amount of correction for the y value, based on the computed heights of the
front (y position front) and back (back real)

e y total: Y Pos and y position give the total y value (y Pos Adj) - this is the top-bottom-position
based on the computed rotation angles

e z total: it was planned to add some logic to also correct the z parameter (front-back) -
however, here Z Pos is only passed to z Pos Adj

EulerToQuaternion

When creating this project | ran into a strange problem: x, y, and z rotation are no independent from
each other. | described it like this:

in Al, the x and y rotation of a screen fixture refer to the world’s x and y axis. However, z rotation
refers to the screen’s z axis. This leads to the situation - with x_rot = -90 - that y_rot and z_rot do
exactly the same, but the screen cannot be tilted sideways (what z_rotation does).

Dave Green was kind enough to give a thorough explanation of this:

You have discovered one of the draw backs of the Euler angle system we use in to rotate screens in
Ai. Gimbal Lock. There is a short video explaining the problem here:
https://www.youtube.com/watch?v=zc8b2Jo7mno. The advantage to using the Euler system for
angles is that everybody understands it. But the trade off is that it has limitations in the form of
gimbal lock.

So you are probably thinking what can | do to resolve this problem? Well the simplest option is to
have a second version of your model which is 'pre-rotated' by 90' on the x axis. That will allow your
z rotation to function as you expect. That might not be the solution you need in this case, but it is a
common solution to the problem.

Another option is to use the alternate skin for the Fixture in the stage patch and then connect to
the x,y,z,w Quat ports. | believe these allow you to rotate the fixture using quaternion rotation.
Only problem is | just tried this and | have no idea what data you need to feed into it. | know this
solves this problem though if you can work out what to feed into it. Ciaran may be able to

AVOSUPPORT - https://avosupport.de/wiki/

https://www.youtube.com/watch?v=zc8b2Jo7mno

Last
update:
2018/12/05
10:05

ai:examples:movingscreens:movingscreens https://avosupport.de/wiki/ai/examples/movingscreens/movingscreens?rev=1544004354

elaborate here as he added these ports. There is a short video explaining quaternion rotation here:
https://www.youtube.com/watch?v=SCbpxiCNOUO you should be able to take some math / trig
modules in salvation and replicate the conversion detailed in this video if you are feeling brave ;)

And while | was still struggling to find my way through all this Ciaran was so kind to create a patch
which is now included as system patch:

As Dave has said you encounter this problem based on the way Euler angles are defined in
Euclidean Space. To get around this we can either use a 4x4 rotation matrix or quaternions.
Without getting into the maths too much | have created a patch that should convert your Euler
Angles into Quaternions, giving you back full 3 degrees of rotation.

W tuderTcpeatsmion UpL [

From:
https://avosupport.de/wiki/ - AVOSUPPORT

Permanent link:

Last update: 2018/12/05 10:05

https://avosupport.de/wiki/ Printed on 2025/11/27 11:52

https://www.youtube.com/watch?v=SCbpxiCN0U0
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_eulertoquaternion.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/
https://avosupport.de/wiki/ai/examples/movingscreens/movingscreens?rev=1544004354

	Moving Screens
	Background
	Used Modules and Patches
	Stage Patch
	Middle: the main inputs and outputs
	Upper part: the hung segments
	Winde 1-3: getting the absolute height data
	Calculate
	EulerToQuaternion

