
2025/08/13 23:30 1/10 Moving Screens

AVOSUPPORT - https://avosupport.de/wiki/

Ai Example

Moving Screens

The background of a stage is formed of screen segments, each hung from Artnet controlled winches.
Ai calculates position and rotation of each segment, and maps the contents accordingly.

by: Sebastian Beutel, January 2016
published: here
tested in version: Ai v8

download:

Stagepatch
,
Models

The models are distinct as for their UV mapping - make sure to load the correct
model into each screen.

Hint: click the images to show them larger.

moving, winch, quaternion, uv-map

Background

This project was done for a friend of mine who is the lighting designer for one of Germany's most well-
known comedians. He designed the stage elements and wanted to use Ai to map on the moving
segments. This project was used on tour for more than a year.

The background of the setup is formed from a number of segments, each a flat surface of approx. 1 x
2 meters. Five such segments are hung from the rig, each with 3 Artnet-controlled winches. Per
segment there is one winch for the top/left corner, one for the top/right corner, and one for the
bottom-center point, this winch being suspended more upstage. With the winches in such a setup it is
possible to hoist the segment, and to rotate and/or tilt it (within limits). The winches used in this setup
feed their current position back via Artnet - and these data are used by Ai to calculate the current
position and rotation of each segment. Likewise, more such segments were standing on the ground,
on Artnet-controlled rotators, which also fed their current position back. This way it was possible to
map contents onto the whole surface.

 

https://avosupport.de/wiki/_media/ai/examples/movingscreens/stagepatch.zip
https://avosupport.de/wiki/_media/ai/examples/movingscreens/models.zip
https://avosupport.de/wiki/tag/moving?do=showtag&tag=moving
https://avosupport.de/wiki/tag/winch?do=showtag&tag=winch
https://avosupport.de/wiki/tag/quaternion?do=showtag&tag=quaternion
https://avosupport.de/wiki/tag/uv-map?do=showtag&tag=uv-map
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_total.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_stagepatch_total.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens


Last update: 2018/12/05
13:57 ai:examples:movingscreens:movingscreens https://avosupport.de/wiki/ai/examples/movingscreens/movingscreens

https://avosupport.de/wiki/ Printed on 2025/08/13 23:30

Here, Ai was not only used as visualiser, but was the main mapping machine. The show was
controlled from a GrandMA2 command wing, and most of the parts were timecoded to be in sync with
the music.

Some of the special aspects of this project:

it was necessary to mimic the real behaviour of the segments, in order to reproduce it from the
position data
something what was completely new to me: we ran into a gimbal lock, and Mr. Dave Green was
kind enough to explain this and provide a solution - see EulerToQuaternion
the handles of the projectors and of most of the screen fixtures were hidden from the stage
construction page, in order to gain overview
it is not possible to do a proper softedge on surfaces which can dynamically tilt. Hence it was
decided to go for a hardedge, and only some segments were displayed per projector
as the entire background was always mapped as one big canvas, only one screen was exposed
to the Ai GUI. The part each segment was to show was set in the UV map - hence, each
segment needed to have its designated model.

Used Modules and Patches

Constant
Rectangle
Window
video out
Monitor
Euler To Quaternion
Formula
ArtNet Input Large
Patch IO
Notepad
Vector Math

Stage Patch

Again, the whole stage patch can be devided in some sections:

https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_stagepatch_top.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/ai/modules/controller/constant
https://avosupport.de/wiki/ai/modules/generator/rectangle
https://avosupport.de/wiki/ai/modules/gl/window
https://avosupport.de/wiki/ai/modules/display/video_out
https://avosupport.de/wiki/ai/modules/controller/monitor
https://avosupport.de/wiki/ai/patches/eulertoquaternion
https://avosupport.de/wiki/ai/modules/math/formula
https://avosupport.de/wiki/ai/modules/network/artnetinputlarge
https://avosupport.de/wiki/ai/modules/patch/patch_io
https://avosupport.de/wiki/ai/modules/text/notepad
https://avosupport.de/wiki/ai/modules/math/vector_math


2025/08/13 23:30 3/10 Moving Screens

AVOSUPPORT - https://avosupport.de/wiki/

in the middle there are the main inputs and outputs
the upper part holds the upper (hung) segments - the screens, inputs, and calculations
the lower part holds the segments which were standing on the ground
at the bottom there are the projector definitions

Middle: the main inputs and outputs

there are a few Constant modules to make it easy to set some parameters globally:
Height in m sets the general height of where the winches are hung
BackChan Univ. sets the ArtNet universe for the data for the background segments'
winches
MediaSpinn Univ. sets the ArtNet universe for the rotators on the ground

the little cluster of a Rectangle, a Window and a video out (Output_0) gets its signal from the
first screen fixture (which is the only one shown in the GUI) - this allows a quick preview, in a
window or on a screen
the AI OUTPUTS patch and the Multi MonitorOut button are simply moved here when
moving modules and patches around - they belong to any proper stage patch/project
Mixer_0 is the only mixer in this patch - it stems from the beginning of this project when only
one screen was in the patch. Note that as there was only one mixer needed (all screen
elements get the same contents and apply their UV map), all other mixers were simply
removed, and all screen fixtures get their video input from this one mixer
Patch IO is not the module but the main IO which is there in every project, to allow
connectivity to your network. Here, the DMX Send port needs to be connected to various other
patches in order for them to receive the ArtNet data
the MediaSpinner ArtNet subpatch belongs (technically) to the ground rotators and is
explained further down

Upper part: the hung segments

https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_mainio.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/ai/modules/controller/constant
https://avosupport.de/wiki/ai/modules/generator/rectangle
https://avosupport.de/wiki/ai/modules/gl/window
https://avosupport.de/wiki/ai/modules/display/video_out


Last update: 2018/12/05
13:57 ai:examples:movingscreens:movingscreens https://avosupport.de/wiki/ai/examples/movingscreens/movingscreens

https://avosupport.de/wiki/ Printed on 2025/08/13 23:30

For each of the 5 hung segments there are some patches and modules in order to calculate positions
and rotation data, and to display the screen segment:

top-left, there are some constants to define the general position: X_Pos, Y_Pos and Z_Pos set
where the segment generally is (its origin), and Susp_Width and Susp_Height let us fine-
tune how the segments are rigged (the smaller the suspension distance, the more tilt can be
acchieved with a little winch travel)
Winde 1-3 is a subpatch. It takes the global Artnet Input, Artnet Universe and
Height. Also, the IDs of the winches are exposed as inputs and need to be set to match which
winch is located where. The patch then takes the Artnet data and calculates the height of each
of the three points (left, right, back). These results are then send to the next subpatch
Calculate. For an explanation of the calculations see below.
Calculate is the subpatch where the magic happens: from the height data for each point the
absolute position and rotation of this segment is calculated. Inputs are the constants defined
and the positions from the previous subpatch - outputs are position and rotation (angle) data.

https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_upper_screen.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/ai/modules/controller/constant


2025/08/13 23:30 5/10 Moving Screens

AVOSUPPORT - https://avosupport.de/wiki/

For an explanation of the calculations see below.
two Monitor modules were inserted here only to monitor the computed angels
Euler To Quaternion is another subpatch which is explained below. It converts the computed
rotation data to another dimension (Quaternions).
x_corr is a fader to allow for minor corrections of the x position - its value is also sent into the
Calculate subpatch
finally, bottom-left is the screen fixture for this very segment:

only the first one is left with its original name AddictFixture_0, and all others were
renamed to some other name. This is how Ai works: only fixtures with names in ascending
order are displayed with handles in the GUI. Renaming the other screen fixtures removes
their handles, but lets them still show up, in the GUI
make sure to load the correct model into each screen fixture (drag and drop the 3ds file
onto the fixture)
Canvas Res X and Canvas Res Y need to be set to the values the contents is
produced in
Screen Fixture Output is sent to the projectors at the bottom of the stage patch
the green Canvas Out is connected only for the very first screen (the one with the
mixer) and is patched to our little monitor window (see above)
Mix Return gets the main video mix from our only mixer (see above)
x/y/z Pos Adj are connected to our Calculate subpatch where they get the positions
from
x/y/z/w Quat get the special rotation data from the EulerToQuaternion subpatch

Winde 1-3: getting the absolute height data

As described above the subpatch Winde 1-3 takes the Artnet dat and returns the absolut heights for
the three points. Double-click the module to reveal its contents:

This should be easy to understand - simply read it left-to-right:

https://avosupport.de/wiki/ai/modules/controller/monitor
https://avosupport.de/wiki/ai/patches/eulertoquaternion
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_winde.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_winde_2x8to16bit.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens


Last update: 2018/12/05
13:57 ai:examples:movingscreens:movingscreens https://avosupport.de/wiki/ai/examples/movingscreens/movingscreens

https://avosupport.de/wiki/ Printed on 2025/08/13 23:30

the (exposed to the parent patch) constants take the Id per winch, and based on this, the
following Formula modules compute the two channel numbers per winch
the ArtNet Input Large module (with the Server Input and Universe ports patched to the
Patch IO) return the Artnet values for the 6 channels in question (here it was decided to get the
values normalized, i.e. 0..1)
the 2×8-Bit to 16-Bit subpatch uses a little Vector Math to combine the high and the low
channel into one value
of course, for debugging, some Monitor modules display the results
the Formula modules convert the results to meters (as the winches have a resolution of
1/millimeter), and subtract this from the global height (again from the patch io)
the result is then returned via the patch io
the Notepad simply gives some explanations: 'The winch returns its position in mm. One Artnet
digit equals one mm travel. E.g. 1 (hi byte) + 255 (lo byte) gives a travel of 511 mm.'

Calculate

Calculate is the main subpatch where from the three points' height the position and rotation is
computed.

Note that this is not exact - honestly I had wished to have someone with a degree in
physics to help me with this. However it was close enough to reality to be used on a tour
for more than a year.

 

Let's try to explain the logic:

highest_front: the highest front height (from Left_Abs and Right_Abs)
max_rotation: the max. height difference based on suspension width/height
left_real, right_real: either Left_Abs (Right_Abs) if this is higher, or (if this is the lower
point) the other point's height minus max_rotation
highest_total: the greatest height - either from highest_front, or Back_Abs
max_tilt: right now this directly passes Susp_Height but is already a formula module for
further tweaking
back_real: the greatest height from either Back_Abs (if the back point is the highest) or the
highest point from L, R, B, minus the suspension height
min_front: (this is in case B would be the highest point - it was agreed that this would never
happen by controlling the travel properly, to prevent the pane from flipping): back_real minus
Susp_Height plus 0.001

https://avosupport.de/wiki/ai/modules/controller/constant
https://avosupport.de/wiki/ai/modules/math/formula
https://avosupport.de/wiki/ai/modules/network/artnetinputlarge
https://avosupport.de/wiki/ai/modules/patch/patch_io
https://avosupport.de/wiki/ai/modules/math/vector_math
https://avosupport.de/wiki/ai/modules/controller/monitor
https://avosupport.de/wiki/ai/modules/math/formula
https://avosupport.de/wiki/ai/modules/text/notepad
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_calculate.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_calculate_maxrot.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens


2025/08/13 23:30 7/10 Moving Screens

AVOSUPPORT - https://avosupport.de/wiki/

rotation: the 'roll', computed from left_real, right_real and Susp_Width – note that this result
is in radiants
rotation_grad: converts the rotation (roll) value to degrees (by multiplying with 180/PI)
y_position_front: either the mid between left_real and right_real, or min_front (if L and R
are slack)
tilt: the tilt angle is computed (in radiants) from diff between back_real, y_position_front, and
Susp_Height
tilt_grad: by multiplying with 180/PI tilt is converted to degrees. +90 accomodates for
rotated models. The result is x Angle Adjust
x_z_correct: the amount of correction for the x value, based on the tilt angle
x_correct is the amount of correction to the x value (how far the model is shifted
horizontally). This is computed from rotation (roll), Susp_Height, x_z_correct and x_correct
which allows to be set from the parent patch
x_total: X_Pos and x_correct give the total x value (x Pos Adj) - this is the left-right-position
based on the computed rotation angles
y position: the amount of correction for the y value, based on the computed heights of the
front (y position front) and back (back real)
y_total: Y_Pos and y position give the total y value (y Pos Adj) - this is the top-bottom-position
based on the computed rotation angles
z_total: it was planned to add some logic to also correct the z parameter (front-back) -
however, here Z_Pos is only passed to z Pos Adj

EulerToQuaternion

When creating this project I ran into a strange problem: x, y, and z rotation are no independent from
each other. I described it like this:

in AI, the x and y rotation of a screen fixture refer to the world’s x and y axis. However, z rotation
refers to the screen’s z axis. This leads to the situation – with x_rot = -90 – that y_rot and z_rot do
exactly the same, but the screen cannot be tilted sideways (what z_rotation does).

Dave Green was kind enough to give a thorough explanation of this:

You have discovered one of the draw backs of the Euler angle system we use in to rotate screens in
Ai. Gimbal Lock. There is a short video explaining the problem here:
https://www.youtube.com/watch?v=zc8b2Jo7mno. The advantage to using the Euler system for
angles is that everybody understands it. But the trade off is that it has limitations in the form of
gimbal lock.

So you are probably thinking what can I do to resolve this problem? Well the simplest option is to
have a second version of your model which is 'pre-rotated' by 90' on the x axis. That will allow your
z rotation to function as you expect. That might not be the solution you need in this case, but it is a
common solution to the problem.

Another option is to use the alternate skin for the Fixture in the stage patch and then connect to
the x,y,z,w Quat ports. I believe these allow you to rotate the fixture using quaternion rotation.
Only problem is I just tried this and I have no idea what data you need to feed into it. I know this
solves this problem though if you can work out what to feed into it. Ciaran may be able to
elaborate here as he added these ports. There is a short video explaining quaternion rotation here:
https://www.youtube.com/watch?v=SCbpxiCN0U0 you should be able to take some math / trig

https://www.youtube.com/watch?v=zc8b2Jo7mno
https://www.youtube.com/watch?v=SCbpxiCN0U0


Last update: 2018/12/05
13:57 ai:examples:movingscreens:movingscreens https://avosupport.de/wiki/ai/examples/movingscreens/movingscreens

https://avosupport.de/wiki/ Printed on 2025/08/13 23:30

modules in salvation and replicate the conversion detailed in this video if you are feeling brave ;)

And while I was still struggling to find my way through all this Ciaran was so kind to create a patch
which is now included as system patch:

As Dave has said you encounter this problem based on the way Euler angles are defined in
Euclidean Space. To get around this we can either use a 4×4 rotation matrix or quaternions.
Without getting into the maths too much I have created a patch that should convert your Euler
Angles into Quaternions, giving you back full 3 degrees of rotation.

(This concludes the top part - the calculations for the hung models)

Lower part: Mediaspinners, standing on the ground

https://avosupport.de/wiki/_detail/ai/examples/movingscreens/moving_screens_eulertoquaternion.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/bottom_mediaspinners.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens


2025/08/13 23:30 9/10 Moving Screens

AVOSUPPORT - https://avosupport.de/wiki/

This part is pretty much straight-forward: each one of the six screens which are standing in
mediaspinners on the ground is represented by its own screen fixtures so that each one can be
loaded its own model (again, distinct by the UV mapping), and can be controlled, as per the y roation,
via Artnet from the Mediaspinner controller.

This is done in a little subpatch: MediaSpinner ArtNet

MediaSpinner ArtNet

This subpatch simply allows to set the DMX addresses per mediaspinner - each one takes two DMX
channels as 16bit. From the given start address per spinner, the next channel is computed. Then the
ArtNet Input Large gets us the values, which are then being combined to a 16bit value
(0…65,535), which is then normalized (0…1) and multiplied by the full travel (450 degrees). The
result is returned, and used as y_rotation parameter y Angle Adj. for the respective spinner.

Bottom: the projector outputs

Finally, at the very bottom of the stagepatch, the projectors are defined. Note that again we didn't
use softedge, but assigned each screen to a specific projector - see Advanced Output Patch for details
(essentially it is disabling Use All Fixtures per projector, and patching the screen fixture outputs
to the respective inputs).

https://avosupport.de/wiki/_detail/ai/examples/movingscreens/mediaspinner_artnet.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/_detail/ai/examples/movingscreens/projectors.png?id=ai%3Aexamples%3Amovingscreens%3Amovingscreens
https://avosupport.de/wiki/ai/examples/advancedoutputpatch/advancedoutputpatch


Last update: 2018/12/05
13:57 ai:examples:movingscreens:movingscreens https://avosupport.de/wiki/ai/examples/movingscreens/movingscreens

https://avosupport.de/wiki/ Printed on 2025/08/13 23:30

From:
https://avosupport.de/wiki/ - AVOSUPPORT

Permanent link:
https://avosupport.de/wiki/ai/examples/movingscreens/movingscreens

Last update: 2018/12/05 13:57

https://avosupport.de/wiki/
https://avosupport.de/wiki/ai/examples/movingscreens/movingscreens

	Moving Screens
	Background
	Used Modules and Patches
	Stage Patch
	Middle: the main inputs and outputs
	Upper part: the hung segments
	Winde 1-3: getting the absolute height data
	Calculate
	EulerToQuaternion

	Lower part: Mediaspinners, standing on the ground
	MediaSpinner ArtNet

	Bottom: the projector outputs



